• Skip to main content

Search

Just another WordPress site

Battle ground cinema movie times

A Space in Time

July 1, 2002 by www.theatlantic.com Leave a Comment

In the evenings, when my particular piece of Earth has turned away from the Sun, and is exposed instead to the rest of the cosmos, I sit in front of a keyboard, log on, and seek out the windows that look down at the planets and out at the stars. It’s a markedly different experience from looking at reproductions on paper. What I see is closer to the source. In fact, it’s indistinguishable from the source. These are images that have never registered on a negative. Like the Internet itself, they are products of a digitized era. Over the past couple of years I’ve been monitoring the long rectangular strips of Martian surface being beamed across the void, in a steady stream of zeroes and ones, from the umbrella-shaped high-gain antenna of the Mars Global Surveyor spacecraft. These pictures are so fresh that their immediacy practically crackles. Call it “chrono-clarity.” That bluish wispy cloud, for example, hovering over the Hecates Tholus volcano, which rears above the pockmarked surface of the Elysium Volcanic Region in the Martian eastern hemisphere—it has barely had time to disperse before I, or anyone with Internet access, can see it in all its spooky beauty. The volcano emerges from the pink Martian desert, which looks organic and impressionable—like human skin, or the surface of a clay pot before firing. The tenuous cloud floats near the volcano’s mouth, as if in prelude to an eruption. It’s a picture composed of millions of dots and dashes of data, produced by a transmission technique just a few steps removed from Morse code; but it reveals a landscape the likes of which Samuel Morse, let alone the ranks of Earth-based astronomers who have surveyed the planets since well before Babylonian times, could scarcely have envisioned.

In case there was any doubt, many of those good old science-fiction predictions from the 1950s and the 1960s are coming true. “NEW SQUAD OF ROBOTS READY TO ASSAULT MARS” read a 1998 headline in the online Houston Chronicle , stirring submerged memories of my adolescent readings of Isaac Asimov’s I, Robot stories. But Asimov’s sentient robots were frequently confused. Something always seemed to be going wrong with them, and the mayhem that followed could inevitably be traced back to a programming error by their human handlers—a situation not unfamiliar to those running NASA’s Mars program, which was temporarily grounded after a catastrophic pair of failures in late 1999. (The Mars Climate Orbiter was lost owing to the stark failure by one group of engineers to translate another group’s figures into metric units of measurement, and the Mars Polar Lander because for some unfathomable reason its landing gear hadn’t been adequately tested.)

Elsewhere on the Web
Links to related material on other Web sites.

Mars Exploration Homepage
Information about the planet and current exploratory missions. Posted by NASA.

For all their formidable prescience, Asimov and his contemporaries Arthur C. Clarke and Robert Heinlein didn’t quite conjure up that still-startling compound of populist forum, deep archive, and global amphitheater called the Internet. I picture a packed arena of Romans, teeming and kaleidoscopic, at the height of the empire. They’re savoring the gods’-eye view, watching the Red Planet turn. Would they have seen it as territory to conquer? Would they have sent in the legions? Mars, after all, was named after the Roman god of war, the father of Romulus and Remus. And what about our age—which way, in the end, will we go? “Earth is the cradle of the mind,” said the pioneering Russian space-flight theorist Konstantin Tsiolkovsky. “But we cannot live in a cradle forever.”

A low hum resounds from the tiny fan recessed in my computer—a propeller venting warmth from the machinery of virtual travel. With rusty Martian sand dunes still undulating across the screen, I notice that outside, the Moon is rising over subzero Central Europe. The city below it is quiet, subdued under snow. Beyond brick smokestacks a familiar cool light defines the icy sphere. A ghostly mass of battered rock, Earth’s satellite is an archetypal solar-system object, with surface features echoing those of many of the planets and moons arrayed in far-flung archipelagos around the Sun. But it’s much more than that—at least in the human context. The longer one considers it, the more its tidal influence grows. Without that luminescent lure would there even have been a pull to leave this planet?

Elsewhere on the Web
Links to related material on other Web sites.

Far Side of the Moon
A photo of the moon taken by Apollo 16. Posted by NASA.

Apollo Lunar Surface Journal
Photographs, reports, and general information about lunar missions. Posted by NASA.

The Project Apollo Archive
A privately maintained Web site that “serves as an online reference source and repository of digital images pertaining to the historic manned lunar landing program.”

Deciding to take a closer look, I accelerate away from Mars and shoot thirty years into the past—descending rapidly through the strata of the Apollo archives. I quickly find an excellent picture of a three-quarters moon, taken by a large-format mapping camera during one of the later manned missions, in the early 1970s. Almost the entire ravaged face is visible, with tactile gradations of surface texture readily apparent—craters edging gradually toward the terminator, that endlessly migratory line between day and night, and into darkness. There’s a three-dimensional, convex quality to the image. But it looks somehow odd. I realize that I’m looking down at a lunar surface divided between the side always oriented toward Earth—the face with a face, so to speak—and the far side. Two of the familiar eastern mares, or seas, are situated here on the left side of the picture—in the hemisphere visible from Earth. On the right, facing deep space, well east of the immense circular basin of Mare Crisium, the battered back of the Moon is submerged in elongated shadows.

Suddenly, with a kind of vertigo, I sense the home planet, way off past the left border of the picture—and even myself, somewhere down there, at the age of ten, maybe looking up at the exact moment the shutter fell on Apollo 16 . I’m frozen in that same clockwork flux generated by the spheres as they move inexorably through space. Looking out the window again (here, now, a traveler on a winter’s night), I realize that the Moon is in exactly the same phase.

Between self, screen, and window, a kind of temporal triangulation. And what am I doing now, if not the same thing as then? Looking up, “just” in time.

When I return to Earth, it’s always to Ljubljana. As far as most of my New York friends are concerned, I already live in outer space. Slovenia has never exactly been at the center of things. It’s not even at the center of that nebulous interzone called Central Europe. I came to this tiny nation of two million alpine Slavs shortly after its dangerous secession from Yugoslavia, in the summer of 1991. Ten days of intermittent, partisan-style war against the federal army had devolved into an uneasy cease-fire, periodically shattered by the rolling kettle-drum crash of MiGs breaking the sound barrier overhead. But the army soon withdrew, rumbling southeast toward Croatia and Bosnia, with a kind of murderous, humiliated gleam in its eye. It left behind an independent—and remarkably unscathed—new country.

I moved to this fringe of the disastrous Balkans to make a film. When I finally finished, four years later, I remained based in Hapsburg-perfect Ljubljana while I took the resulting movie—called Predictions of Fire — to festivals all over the world. Meanwhile, I got involved in various projects and lives. Then I got married—and eventually had a son. The time never seemed right to move back to New York. Without quite realizing it, I had become an expatriate.

But it didn’t take me long to discover that it was possible to go even further out. In the spring of 1995, on the early color monitor of a used IBM clone, the World Wide Web blinked to life on my desktop for the first time. I quickly proceeded past the novelty of being able to read The New York Times while most of Manhattan slept, and discovered a way of looking through the “windows” of crewless spacecraft—vessels that have seen Earth dwindle to the size of a pearl, and then a pixel, as they voyaged far beyond any place ever directly observed by human beings. Very far beyond.

It takes only the briefest of Net-mediated shunts, in other words, to vault from the slate-gray drainpipes and cracked flagstones of Vrhovceva Street No. 4 and through the open window of escape velocity—25,000 miles per hour. The procedure is silent, with none of the countdown, dazzle, and roar we associate with rocket propulsion. But it works flawlessly nonetheless. And once one has escaped Earth’s gravity, the universe unfolds, revealing vistas across space and time so multi-faceted, so replete with the unlikely, the mysterious, and the awe-inspiring, that it’s astonishing that the whole procedure can be channeled through the good offices of a local phone call.

Suddenly, on the screen as in reality, I saw the whole story—the human and even the post-human story—delineated against a vast, starry black backdrop. Forget the astronauts, marooned in low Earth orbit for three decades. A continual remote-controlled extension of boundaries is under way. Intricate space probes—encased in scarabaeoid shells, festooned with scopes and scanners, and driven by solar-powered cells and radio-isotope thermo-electric generators—are redefining the limits of human knowledge. Deployed at the perimeter, they’re casting wide-eyed glances and making sophisticated measurements, well past any terra incognita where sea monsters once seethed through oceans pouring off the rim of a flat planet.

Pretty soon I was hooked. I began compulsively monitoring the progress of our space-faring machines.

That moon, rising implacably over Ljubljana, has long since ceded center stage. It defined the first act, but now it’s a cameo, backlit by the immense universe beyond. It played its role well, though, using its small gravitational field to full advantage, gradually reeling the species off Earth to have a look around. At the beginning of the fifth decade of space travel the various tools for that investigation have increased their power in exponential jumps. What they’re looking at is astonishing in its depth and diversity.

Elsewhere on the Web
Links to related material on other Web sites.

SOHO Exploring the Sun
The Web site of the joint NASA-European Space Agency solar observatory. Includes photographs and general information about the observatory.

Cassini-Huygens Mission to Saturn and Titan
Information about the Cassini spacecraft and its missions. Posted by NASA’s Jet Propulsion Laboratory.

NASA’s Jet Propulsion Laboratory, which is in charge of all American unmanned missions, is keeping tabs on a record number of space probes these days. They include the joint NASA-European Space Agency solar observatory, which has been producing amazing stop-motion films of quakes and tornadoes on the Sun for more than six years now, and the giant two-story spacecraft Cassini , which has been threading a circuitous course toward Saturn ever since its launch, in October of 1997. Cassini swung past Venus twice, picking up gravity-assisted momentum each time, and then boomeranged around Earth again on its seven-year flight to the ringed planet. On January 1 of last year the probe sent home one of the most beautiful color photographs ever taken of Jupiter and its companion moon Io. A behemoth compared with most of the other new probes, Cassini was designed well before the advent of the “faster, better, cheaper” doctrine that the former NASA administrator Daniel S. Goldin introduced, with some fanfare, in the early 1990s. This low-budget management philosophy, seemingly not applicable to the half-billion-per-blastoff space shuttle, let alone the financially troubled International Space Station, requires that spacecraft cost less than $150 million and go from the drawing board to the launch pad in thirty-six months or less. It has been under heavy bureaucratic scrutiny recently, owing to the loss of those two Mars probes in 1999.

Still, NASA’s Discovery-class missions were run according to this doctrine, and the program has racked up some real successes. They include Global Surveyor , which recently completed a photographic map of the Red Planet to rival the best we have of Earth, and Pathfinder , which created something of a media sensation back in 1997. Pathfinder bounced down on the Martian surface using a set of inflated air bags, the first time such a landing method had been attempted. It then opened its multiple petals like a mechanized flower and proceeded to roll out a telegenic, insectoid little rover named Sojourner— without a doubt the most charismatic unmanned vehicle in NASA history.

In early 2000, in an event largely ignored by the mainstream media, the Jet Propulsion Laboratory eased a Discovery probe called NEAR (for Near Earth Asteroid Rendezvous ) into orbit around a twenty-one-mile-long peanut-shaped, methodically tumbling rock called Eros. NEAR was the first spacecraft ever to orbit an asteroid—no inconsiderable feat of celestial navigation, given that Eros has a gravity field so weak that an astronaut on its surface could reach escape velocity by simply jumping off. A year later project scientists maneuvered the probe to within a few hundred yards of its subject and then directed it to touch down gently. NEAR thus became the first spacecraft to land on an asteroid.

NEAR hasn’t performed flawlessly. Not unlike an adolescent confronting the object of his or her erotic fascination for the first time, the spacecraft suddenly flipped out during its initial approach to Eros, in December of 1998. Cut off from communication with Earth, acting on its own, the probe’s computer managed to re-orient the spinning craft. But by the time the JPL flight engineers had figured out what went wrong, they were forced to send their charge all the way around the Sun again—a year-long trajectory—for another try.

From the archives:

“The Danger of Space Junk” (July 1998)
In a place without landfills, what goes up had better come down. By Steve Olson

They wouldn’t have been able to do so if NEAR hadn’t straightened up and flown right all by itself. There’s something fascinating about the increasing autonomy of these robots with which we’re populating the heavens. In late fall an e-mail came to me from the JPL—something again automatic, sent through that other universe, the one made of innumerable routers and chips. It announced the launch of the first unmanned spacecraft capable of making many of its own decisions regarding its orientation vis-à-vis Earth. The phrasing itself was intriguing—even if we were not yet talking about political orientation. If I didn’t know better, I might have begun to suspect that a kind of baton-passing was taking place, far beyond the atmosphere. From flesh-and-blood us to nuts-and-bolts them . Science fiction?

Sifting through a self-congratulatory final press release archived at the Mars Pathfinder site, I was suddenly, unexpectedly, moved. Contact with the lander was lost, it said, in early October of 1997. That was after nearly three months of continuous operation—much longer than expected. The loss of communication was attributed to the failure of the lander’s battery, which in turn cut power to the heater. “After that,” the text read, “the lander would begin getting colder at night and go through much deeper day-night thermal cycles. Eventually, the cold or the cycling would probably render the lander inoperable.”

But little Sojourner is almost entirely solar-powered. It was just as animated as ever when all contact with Earth was lost. I came across the following sentence: “The health and status of the rover is … unknown, but … it is probably circling the vicinity of the lander, attempting to communicate with it.”

The poignancy of it! The pathos! Powered forever by the inexhaustible Sun, impervious to the cold, Sojourner may to this day be wearing grooves in that ocherous desert floor. And we’ve forgotten our cybernetic creation, literally leaving it to its own devices. Having chipped, hammered, glued, and then welded and screwed together the matter we’re surrounded with, we’ve finally endowed it with eyes, ears, and a capacity for self-direction—something like early life itself. We’ve propelled it at extreme velocities to distances that redefine how far human artifacts can go. And we’ve left it to circle, or even to beeline out of the solar system—still seeking orders, still trying to communicate with us.

Elsewhere on the Web
Links to related material on other Web sites.

Mars Exploration
Photographs and videos of various Mars missions. Posted by NASA.

A few years ago I happened to be scrolling along the bone-dry branchings of a newly discovered Martian riverbed when a small headline started winking on and off like an insistent neon sign, advertising a live feed of the Mars Polar Lander launch. I steered my arrow over to the Real Player icon next to it and clicked. A simulated TV set unfolded itself, voilà , in the browser window. The thing was approximately the size of a matchbox. From the virtuality of television to the next stage: the TV itself becomes virtual. This miniature screen-within-a-screen filled with what appeared to be a close-up of Earth’s surface: not grass and soil, or the heaving Pacific, but staggered gray concrete and an elaborate web of girders, ramps, and drifting smoke. Evidently the camera was mounted on the lower stage of a rocket. I was looking directly down at Cape Canaveral launch pad 17B.

A tinny countdown issued forth from my computer’s speakers, and I watched the grainy yet kinetic, comically Lilliputian live launch of that ill-fated robotic mission. Tongues of bright-orange flame flared out, filling the bottom of my stamp-flat TV. The ground rushed away, rapidly becoming coastline and then cloudscape. I clicked on the magnifying-glass icon to enlarge the toy picture, which expanded to fill half the screen. The image now verged on abstraction, a scramble of “compression protocols” trying frantically to keep up with the fast-paced reality of a rocket blasting through the sound barrier and out of the atmosphere just like that . The arc of Earth’s limb appeared—immediately recognizable, as if coded in ancestral memory. Sixty-six seconds after liftoff four pencil-shaped solid-fuel boosters separated from the Delta II rocket and fell gracefully away, trailing streamers of smoke as they spiraled back toward Florida. The curved horizon was defined by the inky blackness of space.

Ironically, this image of our home planet had a far lower resolution than do the crisp pictures Surveyor has been wiring back from Mars. That’s because time had been added to space; it was, at least nominally, a motion picture, and a live one at that. Fascinated by this example of technique chasing technology, of software trailing hardware, I watched our pixelated planet, a spinning blue globe forced continually to reassemble itself as blocks of Atlantic cloud moved lumpily forward. Data coursed through the modem with a barely discernible thrumming sound, something like the brrrrrr of a hummingbird’s wings. Four and a half minutes into the flight the horizon suddenly rose again, now in a free-wheeling spin. The lower stage of the rocket—the one with the camera—had fallen away. Then there was nothing but micro-miniaturized TV static: “snow” twice removed. The probe would soon reach escape velocity. The feed was over. We human beings had been left far behind. Not for the first time.

Elsewhere on the Web
Links to related material on other Web sites.

View From the Viking 1 Lander
An image of the Martian surface, captured by the Viking 1 lander. Posted by The National Space Science Data Center.

Stubbornly refusing re-entry to Earth, I raced ahead of the new probe to Mars orbit again, where I looked down at the grandest canyon in the solar system—a jagged 2,500-mile-long gash that could easily span most of the continental United States. This is Valles Marineris, named after its discoverer, the 1971 Mariner 9 probe. In the past five years Surveyor has zoomed up close on the eroded rim of this immense canyon, which at points is more than six miles deep. The resolution of these pictures is so good that scientists could easily spot, say, a small concession stand set up at the rim of Noctis Labyrinthus, the complex series of connected rift valleys defining the canyon’s western periphery. Coke? Fries? Oxygen? Huge ancient river channels begin from Valles Marineris and run north. Many of them lead to the boulder-strewn floodplains of Chryse Basin—the landing site of both Viking 1 , which set down in 1976, and Pathfinder , which bounced to a halt, beach-ball style, some twenty years later.

I scrutinized the image produced as Surveyor moved across the canyon’s northern edge. A small impact crater was clearly visible near the rim, as perfect as a drop of rainwater captured a split second after hitting a lake. Although this area otherwise looks as dry as dust, in April and May of 2000 startling images of the Gorgonum Chaos region in the Martian southern hemisphere revealed what appeared to be recently formed gullies snaking through twisted terrain. Indistinguishable from similar formations on Earth, of the kind that form always and only above groundwater, they seem to indicate an aquifer only a few hundred yards beneath the surface.

And this, of course, is not something one scribbles furtively at the end of a paragraph, hoping nobody will notice. After hundreds of years of fruitless observation from Earth, followed by three decades of robot flybys, orbiters, and three successful remote landings on the surface, it took the eagle-eyed, low-budget Global Surveyor to finally divine water on Mars. Eureka!

Gazing down at the luminous buttes and mesas of Valles Marineris, an almost familiar landscape creepy in its emptiness of even the faintest flicker of life, I remembered driving in the summer of 1996 from Arizona’s Meteor Crater—the best-preserved impact crater on Earth—to the edge of the Grand Canyon: a place where the Europeans settling the New World came face to face for the first time with a geological past so deep that it called biblical chronology into question. One reason the Grand Canyon became so symbolically important to the United States was that it served as a geologically eloquent stand-in for the young country’s missing cultural history. (Native Americans, of course, didn’t figure.) I wonder if it’s a coincidence that this nation—now able to boast the longest continuous form of government on Earth—is centuries later expending the effort and resources to explore new, even more spectacular places where nature bears no trace of human history.

Nature, they say, abhors a vacuum. But the reference is really to humanity, always rushing in with its gizmos and interpretations. Maybe the serrated walls of that Martian canyon exist as an antipode to the ones in Arizona. Maybe that chasm at the center of American iconography is mirrored from above by Valles Marineris—a place signifying not a country’s past but its future. Not the last frontier but the next one.

Probably the fact that I’ve moved around the globe for much of a lifetime has encouraged my tendency to place things in a cosmic perspective. Reportedly, the handful of astronauts who bounced across the Moon thirty years ago could sense, even at ground level, that they were on a sphere. The horizon looked too close. It also sloped downward, subtly but visibly, in a strange and airless clarity. Being raised in a Foreign Service family, as I was, can produce a similar effect on this planet. Give yourself a multiplicity of camera angles, in enough time zones, and eventually the sky becomes the sole common denominator.

A chain of cities unreels in my memory like a roll of archival film. I rewind to Ankara, Turkey, in the mid-seventies: An acrid pall shrouds the minarets. The city has some of the worst air pollution on Earth. Each room of our large house has an electrostatic air-cleaner; an army of plastic wood-grained boxes tries mightily to zap particulates before they reach our soft American lungs. But this brown haze is winter coal smoke. In the spring the stars blink and wheel high over the Balgat hills, pristine and clear in the thin, dry Anatolian air. For my twelfth birthday I am given a telescope. Out on the darkened lawn I point this tube—a device practically indistinguishable from the one Galileo Galilei built in the winter of 1609—up at the glinting night sky. Like that heretic Pisan, I rapidly discover a number of important things: The Moon is a cratered, mountainous body. The Milky Way is composed of innumerable individual stars. Jupiter, faintly striped, is attended by four stars—spread out in a thin line parallel to its bulging equator.

Several nights later I observe Jupiter again. Those “stars” have changed their positions, relative to the planet and to one another. They’re the Galilean moons.

Nothing, however, prepares me for the sheer aesthetic pleasure of Saturn. How, in all creation, could such an object have come about? Clearly visible in their weightless tilt, as symmetrical as something made by the most precise of machine tools from the cleanest of mathematical models on the largest lathe in the galaxy, the multiple rings encircling this improbable object redefine what nature is capable of. Saturn is more beautiful than anything I have ever seen on Earth. It is a presentation, live and uncut, of cosmic perfection.

I pull eye from eyepiece and look down at the telescope’s white barrel in amazement. Technology may produce a haze to choke cities. It may leak crude into the oceans. But it has also unveiled a universe made of glittering jewels.

Hurtling effortlessly along the cyberspaceways more than two decades later, I monitor blinking readouts and order micro-circuitry and interlinked telecommunications devices to navigate among the planets and the stars. Never before have such solitary, self-directed voyages into deep space been possible. Even the lunar explorers, those who actually broke free of Earth and traveled to another world, were slaves to their schedules and their uncompromising hierarchies of command. Opportunities to simply gaze out the window, to allow the experience to register in the soul, were few and far between. Many, when they returned, retained only sketchy, disembodied memories of what they had experienced. My journeys may not be actual, but they do give me plenty of time to mull over what I’ve seen through the portholes.

Elsewhere on the Web
Links to related material on other Web sites.

2001: A Space Odyssey, Internet Resource Archive
A collection of essays, related links, and photo stills pertaining to 2001.

Underman’s 2001
“A celebration of 2001: A Space Odyssey. ” Comprehensive information about the movie, its creators, and cast.

In May of 2001, a year definitively marked for space by Stanley Kubrick and Arthur C. Clarke in their film of the same name, I discovered that my personal space-exploration method had been validated by none other than the National Research Council, which recommended that an initial $60 million be allocated to create a “national virtual observatory.” With the quantity of data that pours down from the sky growing ever more unmanageable, it seems that the old-style method of observation (in which astronomers, or kids on the lawn, point telescopes where they want to look) is gradually being replaced by something called data mining (in which researchers examine many layers of pre-recorded observations, frequently for the first time). With the Hubble Space Telescope alone downlinking more than two billion bytes a day, and with a higher-capacity next-generation space telescope being assembled in the wings, archives with the capacity to house hundreds of terabytes are necessary. When Cassini finally reaches Saturn, in 2004, its big high-gain antenna will start firehosing data down from the outer solar system at such a rate that the resulting flood will keep planetary scientists busy for generations. Despite unprecedented data-processing capabilities, they’ll only be seining at the shores of the deep data ocean.

This outside-in, archival universe may be demanding all-new methodologies from the scientific classes, but it is also providing squinty-eyed tourists like me with more and more space to surf. With the Moon outside my frosted Ljubljana window now sliding well past its apex and descending toward the jagged Alps, I retrace the comet’s tail of images produced by our distant robot explorers. The sheer number of these pictures, combined with the very high traveling speed of the cameras’ platforms, creates a cinematic effect. This isn’t a cathedral mosaic, arranged across a vaulted ceiling to make a composite narrative of heaven. It’s a flipbook—film stills strung out in sequence along intricate trajectories, culled from some of the most hyperkinetic dolly shots ever devised.

Elsewhere on the Web
Links to related material on other Web sites.

Voyager : Celebrating 25 Years of Discovery
Information about Voyager ‘s photography of Jupiter. Includes a time-lapse video of Voyager 1 ‘s approach to Jupiter.

NASA’s Planetary Photojournal
A collection of images of planets, searchable both by planet and by spacecraft/instrument. Includes an extensive array of Voyager 1 and 2 photographs.

In the past five years the almost frighteningly beautiful trove of Jupiter images sent to Earth by the hit-and-run Voyager probes of the late seventies has been dwarfed by reams of downloads from Galileo — a cybernetic descendant of its namesake that is currently orbiting within the complex Jovian system. Europa, one of the four moons discovered by Galileo in 1610, is particularly stunning. Reminiscent of the sentient ocean planet in the Russian director Andrei Tarkovsky ‘s film Solaris (but frozen into bizarre, intricate patterns of fault lines, and “chaos terrain”), this haunting sphere of frosted off-white is surfaced entirely by branching, splintering, glittering ice. Although cue-ball smooth when viewed from afar, up close it presents a fascinating array of elliptical fissures and ridges—an Abstract Expressionist surface that practically demands decipherment. In 1999 Gregory V. Hoppa, the late Randy Tufts, and a team of planetary scientists from the University of Arizona went a long way toward cracking the code, positing that the most mysterious fault lines identifiable on Europa —the wave-form-like “arcuate” fractures spiraling eerily across the crystalline landscapes near its poles—are almost certainly a result of Jupiter’s shifting tidal pull on subsurface water.

Only comparatively recently, in fact, have Europa’s ramifications begun to register within the planetary-sciences community. The result is a cautious, gathering excitement: the moon has become one of the leading candidates as a host for extraterrestrial life. Some estimates hold that Europa contains five, even ten times as much water as Earth. Richard Terrile, of the Jet Propulsion Laboratory, put it this way to the press: “How often is an ocean discovered? The last one was the Pacific, by Balboa, and that was five hundred years ago.”

As I continue hoarding pictures, I reflect on the freakish diversity of the solar system. To take only one example: Europa floats directly outside the orbit of a sister moon named Io, which is the most volcanic object in known space. This extraordinary fire-and-ice pair couldn’t be more different. Io is orange, purple, greenish in places, and irreducibly strange. Squeezed by the huge hand of Jupiter’s gravity, it erupts with dozens of hyperactive volcanoes that continuously spew plumes hundreds of miles into space. The volcanoes’ magma, which at its source can be far hotter than any on Earth, rains back down on a constantly changing outer crust. In an ongoing inside-out heave, Io is continually replacing its exterior with its interior.

Drifting now past Saturn’s shimmering rings, I see that they’re aswarm with dust and large boulders, and that they abound in spokelike features and strange kinks—the former perhaps caused by electrostatic charges in the dusty, weightless debris, the latter by the gravitational pull of two small “shepherd” moons. Entire schools of theory have arisen to try to explain these complex, ever-shifting phenomena. Following the image trail to the farthest periphery of the solar system, to Uranus and Neptune, the most-distant planets ever visited by a space probe, I catalogue bizarre sights along the way. There’s Miranda, the smallest of Uranus’s major moons. This 290-miles-in-diameter object, named after Prospero’s daughter in The Tempest , has huge faults twelve miles deep. In one provisional theory scientists speculate that it may have been repeatedly shattered by unknown forces, and then just as inexplicably reassembled, throughout its obscure history. Bleakly lit by the distant sun, floating in the ether, it may as well be the place fervently requested by tempest-tossed Gonzalo: “Would I give a thousand furlongs of sea, for an acre of barren ground.”

Arriving finally at deep-blue Neptune, the end of the line, I look down at the sullen black storm that was its largest defining feature when Voyager 2 whipped past the planet in 1989. Called the Great Dark Spot, it’s a whirling bruise the size of Earth, and it whistles with the strongest winds yet measured on any planet. South of it, out of sync, an irregularly shaped white cloud—endearingly named Scooter by Voyager scientists—scuds frenetically along the planet’s equator at 1,200 miles per hour.

As I pass through the chill vacuum beyond the Earth-surveyed solar system, I cast a glance back at crescent Neptune and see that it reminds me of a work of art—something created by a master toward the end of a long career. There’s a wintry virtuosity at play, combined with a palpable absence of any need to show off. Gone are the flashy excesses of Jupiter and Saturn. Neptune’s rings are tenuous, almost invisible. Its haunting, cantaloupe-skinned moon Triton, one of the coldest places in known nature, is dark and inscrutable. Yet in spite of its deep-frozen state, activity is noticeable even here: plumes of carbon as black as squid ink emerge from cracks in its surface. Wafting upward, they’re whipped suddenly into horizontal lines by some unseen hand. Below this startling scene, floating just above a blue vastness more unfathomable than any sea, a veil of wispy silver clouds is draped across Neptune’s northern hemisphere.

Insomniac nights. I move on to interstellar and intergalactic space—to places capable of making even the most exotic views of the planets and moons seem … local . These images are sent down by the orbiting Hubble Space Telescope. Ever since its initial embarrassing myopia was cured by five intricately choreographed space walks during a shuttle mission in 1993, the Hubble has been transmitting an electrifying series of observations— images capable of shocking even the most space-weary astronomer (or visual artist, or theologian, for that matter) into an awed silence.

In early 1996 astronomers fortunate enough to have a time-share arrangement on the Hubble observed what is surely the most apocalyptic sight ever viewed by human beings: two galaxies colliding headlong. A few weeks later, on my screen, I saw them—the Antennae galaxies, so named because of the pair of long, luminous “antennae” of disrupted stellar matter that extends out from their explosive center. It was a scene of almost unimaginable, orgiastic violence—yet quite serenely beautiful at the same time. Salted through the heart of this collision are more than a thousand young star clusters. This is a cataclysm so immense and distant that the stark fact of our ability to capture it, let alone understand it, seems capable of redefining our picture of ourselves. Where do we stand in relation to this stellar train wreck? It isn’t some dream beyond death. In fact, it pre-dates our birth as a species. And yet we miraculously came along to produce this perfect simulacrum, this freeze-frame of smashing stars, and to bind it in a computer hard drive.

The stardust we’re made of was produced by vast explosions not unlike these. It was only much later that the double helix—that genetic concatenation of biochemical triggers, derricks, and hoists—arrived to work the material. Sometimes I wonder what it says about our civilization that most people haven’t noticed, or taken the trouble to really look at, the amazing cornucopia our sensors have been sending down from the heavens. Could the same secular era that produced these visionary machines be responsible for muting some of the awe that should presumably greet what they reveal? In investing them with a measure of soul and curiosity, have we lost an equivalent amount in ourselves? Maybe we just need more time. Or maybe, to put it another way, we need more space.

Honking out one of his trademark long lines, Allen Ginsberg put it well: the hipsters jittering through “Howl” burn for “the ancient heavenly connection to the starry dynamo in the machinery of night.” Less hip, but just as motivated, Hubble’s keepers tried an interesting experiment. From December 18 to 28, 1995, they focused on a place they assumed would have the least activity in it. Like a team of biologists bored with the ecstatic plenitude of life, like researchers dropping a blob of distilled water on a glass slide to see, finally, something without anything , they selected an area well above the cluttered plane of our galaxy and set the Hubble for the deepest focus possible. What they probed was an apparently empty quadrant in the vicinity of the Big Dipper’s handle. The sampled segment—the deepest image ever taken of the heavens—covered, according to the official press release, “a speck of the sky only about the width of a dime located 75 feet away.”

The faint beams of light from this tiny piece of space were painstakingly collected in 342 exposures over ten consecutive days. Cleaned up, processed, and digitally fused, these serial exposures finally came together to paint a picture not of an emptiness populated with a few feeble glowworm photons but of a spectral woven carpet of galaxies seemingly reaching on and out forever, deep into space and time. About 1,500 venerable pinwheels and other galactic forms careen through the Hubble’s cosmic “core sample,” so faint they’re undetectable by even the largest ground-based telescopes. Some of them at magnitude 30 are still four billion times fainter than that which can be seen by the unaided human eye. Called the Hubble Deep Field , the image gives vertiginous new meaning to the term “recorded history.”

Selecting the highest-resolution file of this picture I can find, a sixty-seven-megabyte giant archived somewhere in England, I hit “load” and walk away from the apartment for four hours. Ljubljana on a winter’s night: kamikaze drivers barrel through a dense, rolling fog. I look up at the sky; there’s nothing there. Back in my apartment a laptop methodically assembles the galaxies.

When I finally return, through scrambled medieval streets and up creaking stairs, a vision from the edge of known reality fills my screen. Scrolling up and across, I try to understand. No , I finally decide, I’m not deceiving myself. This product of science is every bit as profound in its implications as the opening sentences of the Old Testament.

A while ago I sent a draft of this article to a friend in New York, the writer Lawrence Weschler (see “The Jewel of Poland,” in this issue). He fired back a passage from Carl Sagan.

In some respects, science has far surpassed religion in delivering awe. How is it that hardly any major religion has looked at science and concluded, “This is better than we thought! The universe is much bigger than our prophets said—grander, more subtle, more elegant. God must be even greater than we dreamed”? Instead they say, “No, no, no! My god is a little god, and I want him to stay that way.” A religion, old or new, that stressed the magnificence of the universe as revealed by modern science might be able to draw forth reserves of reverence and awe hardly tapped by the conventional faiths. Sooner or later, such a religion will emerge.

In the first known writing, Sumerian cuneiform, God was depicted as a star. Text and image, in other words, were once one. Five thousand years later the Hubble, a product of “pure” secular science, brings us full circle. It does so by looking far beyond any human language, spoken or written. About 10 billion years before the Sumerians the most distant—and therefore the oldest—galaxies visible in the Deep Field were still in the process of forming. They were doing so (in the picture they are still doing so, because the reddish light fired outward during their birth took that long to get here) “perhaps less than one billion years after the universe’s birth in the Big Bang,” according to the Space Telescope Science Institute.

Since that winter seven years ago, when the Deep Field image was assembled, space-telescope astronomers have concluded that no matter what seemingly vacant speck of space they deep-focus their cameras on, they’ll inevitably find such an abundance of ancient, glinting fires. Trolling through these multicolored galaxies (the Deep Field image is so large that my screen can only sample a portion of it at a time), I shake my head. Clearly, science is producing iconographic images fraught with a kind of religious intensity. It does so by lengthening the border between what’s visible (and therefore, at least provisionally, interpretable) and the ineffable beyond. This beyond deserves the term simply by definition. And as with any religious icon, or any work of visual art, the galaxies stacked up in the Hubble Deep Field are discernible in the first place because behind them is—darkness. Something undefined. A place—or, rather, an absence of place—that astronomers have named the Dark Zone.

This absolute darkness exists on the other side of the Big Bang. It pullulates its inscrutable energies before the Word. The ultimate nada , it provides a deep black backing canvas for the Beginning. In the presence of this supreme mystery, science, religion, and art all fuse into an etiological question without an answer. The English title for the first book of the Old Testament derives from Genesis kosmou , Greek for “origin of the cosmos.” But the black backdrop beyond these earliest visible galaxies is a text we’ll never be able to find the meaning of, written in an ink that has spread well beyond the margins of the page.

Suddenly I realize that I’m leaning forward, as if I were riding a motorcycle at a dangerously high rate of speed. My nose is only inches from the screen: if I hit a bump, I could vault right through—ending up in the distant past. Or am I already there, looking even further back? And how do you measure the nothing in nothing? How do you place something without anything in time and space when it’s beyond both? A tension is set up—a vibration, as we almost grasp the ungraspable, and even have the hubris to put a frame around it. The ineffable presence of this absence calls to mind an observation by Novalis: “Philosophy is really homesickness, an urge to be at home everywhere. Where, then, are we going? Always to our home.”

In the end, the Hubble’s keepers found their emptiness in spades—their emptiness distilled. Above our heads the light cast off by all those impossibly distant galaxies continues to stream past. The fall of a goose feather is like a redwood crashing to earth by comparison.

As I log off, disengaging from that infinitely extended yet exquisitely detailed out there , it occurs to me that the sending of commands through cyberspace to unlock the images stored in these deep-space archives is a perfect analogue to the transmission and reception of data to and from our distant probes. The living, updated sites devoted to these cybernetic explorers are the link between inner and outer space, between the complex, growing, ever-changing web at the center of our knowledge banks and its most far-flung filaments. Together this whole elaborate structure begins to constitute something like the entirety of the information sphere. It becomes, as Novalis said, home.

With a few flicks of the finger, for example, I can determine that Voyager 1 , the most distant artifact ever made by humanity, reset its “command loss timer” the other day. I can tell you how much propellant it has left, and the power levels of its generators. Voyager left the solar system more than a decade ago. It is nearly eight billion miles away . The spacecraft’s EKG readings are so weak that the signal striking NASA’s global network of deep-space antennas is only 10 -16 watts—or one part in 10 quadrillion. A digital watch uses 20 billion times more power. Traveling at the speed of light, a signal from Voyager currently takes more than ten hours to reach Earth.

From the archives:

“Ansel Adams at 100” (July 1998)
The photographer would not have been pleased by this new retrospective. By Kenneth Brower

Later I will edit images, crop them, print them out. Coffee. Morning sunlight bounces off the snow. A Yugo buzzes by below the window like a fly. I see that were they created by individual human beings, some of these pictures of the solar system and the stars would be considered as much works of art as, for example, Ansel Adams ‘s celebrated photographs of Yosemite, or Frederic Church’s paintings of Niagara. But these depictions of nature are far wilder. I survey an intricate, storm-racked black-and-white Galileo mosaic —five joined pictures of Jupiter’s immense hydrogen-cloud belts, stacked jaggedly in a kind of composite lightning bolt. It’s a picture worthy of a planet named after the Roman ruler of the universe. It also brings to mind Leonardo’s monochromatic Adoration of the Magi , never completed, which dominates a room in the Uffizi Gallery, in Florence. The three Wise Men gaze in amazement at the impossible child. Seated at the center, a serene anchor to the composition, the Madonna smiles enigmatically. Around them an inexplicable cosmos swirls: concentric whorls leading, finally, to a set of stairs reaching up and out—to the heavens.

In the apocalyptic gloom of Tarkovsky’s last film, The Sacrifice , two characters peer anxiously at a framed reproduction of this same painting. Calling it “sinister,” one of them confesses, “I’ve always been terrified of Leonardo.” Seeking a reproduction of Adoration , I click my CD-ROM encyclopedia open to “Leonardo,” and find this sentence: “His scientific theories, like his artistic innovations, were based on careful observation and precise documentation. He understood, better than anyone of his century or the next, the importance of precise scientific observation.”

Ninety years after Leonardo’s death Galileo turned his telescope to the sky—and our knowledge of the universe exploded. By the end of the seventeenth century the total number of known bodies in the solar system had more than doubled. Three hundred years later, near the end of its own life, Galileo’s robot namesake continues to thread its way among the moons he discovered. The universe is exploding again.

I burn Galileo ‘s depiction of Jupiter onto a CD—a procedure necessary because the file is so large—and take it to a place full of shiny new machines busy printing, with the methodical longitudinal whir of high-speed ink jets, big photo-quality images, mostly for advertising. The guy flicking switches there is so intrigued by this raging Jovian stormscape—not to mention my oddball reasons for wanting a poster-size copy of it—that he prints the picture out on a panel the size of a door and refuses to take money. Motoring back on Ljubljana’s perilous ring road, I meditate on the fact that questions of authorship would tend to disqualify a space probe’s pictures from serious consideration as works of art—even though its scientific discoveries are undeniable, and attributed. Yet those same questions are very much present in the rarefied art-world air these days. Even Ansel Adams was Ansel Adams only part of the time. Like most photographers, he shot a lot of pictures and then selected those few that today constitute the work we connect with his name. As for these deep-space images, they aren’t really very different. It’s just that they come from the confluence of an immense collective scientific and engineering effort and the stark, disturbing beauty of the cosmos itself. What’s left is choice—curatorship.

And I would argue that these pictures qualify as art for another reason: their mysterious, Leonardo-esque smile. Who can fathom the mind-blowing idea that, just possibly, some rich, strange form of life may be swimming around under the frozen crust of Europa—a sphere itself in orbit around wrathful Jupiter? And what other way currently exists to leave Earth and look back at that glistening blue-white marble suspended in darkness, a diminishing place, a mote finally winking down to microscopic size and being replaced by a larger system of turning worlds? In this cosmic tracking shot it’s not only space and time that are spanned but also the sum total of our homegrown sciences, philosophies, and arts, revealing, ultimately, a shower of sparks—the universe.

The jagged geometry of supersmooth Europa; the idiosyncratic surfaces of the other orbs floating serenely in space; the pristine interstellar vacuum; the inscrutable emptiness of intergalactic space, that immense, echoing, absolutely featureless void enveloping the spinning galaxies: it all serves as a perfect philosophical mirror image, reflecting back the quandary of the species, the limitations of human knowledge. The frail architecture defined by our distant tools, which places the human race at the center of “what’s known,” is actually our own map of ourselves—a chart that we’ll hand down to successive generations, who may one day see a charming primitivism, or even an intriguing prescience, in our view of all that .

I park the car, tread through snowdrifts, and climb the complaining stairs. Galileo ‘s rendition of Jupiter hangs above my desk in a beam of winter sunlight so feeble that it might be coming from some more distant star. Is this science, religion, or art? Or some kind of recombinant, millennial all-of-the-above? Maybe Leonardo’s Madonna, poised superbly in front of the eroding topography of our particular sphere, is smiling because she knows the answers to those questions. Finally, though, what she might say is irrelevant. Because that ambiguity continues in the infinite landscapes beyond—up the staircase of an incomplete Adoration .

Filed Under: Technology Technology, Web sites, related material, space, Jet Propulsion Laboratory, earth, Hubble Space Telescope, joint NASA-European Space, NASA-European..., space cat adventure time, curvature space time, curvature of 4 dimensional space time, art space and time, diagrams time and space, presentism and the space-time manifold, confined space 4 minute response time, most space time, gabe pbs space time, space slows down time, space time matter energy, matter energy space time, space time continuum theory, space-time continuum, continuum space time, what is space time continuum, space time continuom, space time continum, space time continuium, space time continuim, space time continuem, space time continuam

‘Meeting Doomsday’ And ‘Calendar Bankruptcy’: How Leaders Are Battling Meeting Overload

August 11, 2022 by www.forbes.com Leave a Comment

  • Share to Twitter
  • Share to Linkedin

I t was the return of business travel that tipped Stephanie Dismore’s calendar over the edge.

Earlier this year, as the HP senior executive juggled running to airport gates with a schedule still filled with pandemic-era Zoom calls, Dismore sat down with her assistant and did an audit of her meetings. Some were delegated. Meetings set up simply to share information were canceled, with a request sent for a slide deck. The rest were given a hard look and had to pass a test to stay on her calendar.

“I tell my team ‘no objective, no attendance,’ ” says Dismore, HP’s managing director of North America. If there’s not a clear goal, she says, “I just decline the meeting. If it’s important, it’ll get back on my calendar with an objective at some point.”

Not everyone has the authority—or the executive assistant—to go through that sort of exercise in calendar hygiene. But after more than two years of remote work-fueled meeting bloat, many professionals are struggling to balance the reemergence of pre-pandemic norms—in-person lunches and conferences, business travel and networking dinners—with calendars that haven’t yet moved on from the back-to-back virtual meeting load.

“The actual meeting schedule has not come down to where it was pre-COVID,” Dismore says. “Everyone is feeling that same pressure.”

To address the issue, some companies are making more efforts to combat meeting overload, especially those recurring weekly sync-ups, daily check-ins and sticky team stand-ups that never seem to fall off the calendar.

Open-source software platform GitLab has annual “meeting cleanup” days to reset which recurring meetings are needed, and some teams have “async weeks” with greatly reduced meeting time. Software firm Asana conducted experiments this spring using a process they call “meeting doomsday.” It involves having workers review which standing meetings are valuable, and then scheduling a time to delete them all, only adding back the valuable ones after considering how often they need to happen and who really needs to attend.

And Slack said in June it had not only added “Focus Fridays”—a practice many companies, including HP, have used to ban internal meetings on certain days—but “Maker Weeks” twice each quarter. During those weeks, all internal recurring meetings are canceled, offering not only more time to focus but a “reset” to review which meetings still matter.

“It’s basically a ‘kill all the recurring meetings’” exercise for a week before adding back the necessary ones, says Brian Elliott, a senior vice president at Slack who leads its “digital first” task force. The initiative started with its engineering teams nearly two years ago, but has since rolled out more broadly, says Elliott, who also leads the consortium Future Forum and has written about the practice , which executives at Slack call “ calendar bankruptcy .” “This [meeting] used to be eight people. Now it’s 25 people. Can’t we scale it back?”

The practice comes as organizations try to break habits established during the pandemic, when people had to block calendar time to chat rather than doing a drive-by past a coworker’s desk. Microsoft research shows the average user of its Teams product saw a 153% increase in the number of meetings and a 252% increase in weekly meeting time between February of 2020 and 2022.

Now, as companies try to navigate hybrid work, they increasingly face employee demands not only to be flexible about where they work, but when. “Time flexibility” is increasingly important to workers, Future Forum’s research has found , with an even greater percentage saying they want the ability to choose when they work than where. And more attention is being paid to working “asynchronously,” in which teams use collaboration tools on their own time rather than gathering at specific moments.

“Our default problem-solving approach is addition, and we’ve got to battle that,” says Bob Sutton, a professor at Stanford University who has studied how a “ subtraction” mindset can help reduce meeting overload . “The things you need to look for are: Do I need the meeting at all? Can the meeting be smaller? Can it be less often or shorter?”

“It forces you to completely rethink your meetings and rebuild your calendar from the ground up,” says Rebecca Hinds, who leads Asana Labs, an internal think tank at Asana.

At Asana, a pilot study showed workers saved 11 hours a month, on average, by doing a meeting “audit” and then deleting their recurring meetings before adding back the useful ones. “A lot of 30 minute meetings became 25 or even 15 minute meetings; a lot of weekly meetings became every other week or monthly,” says Rebecca Hinds, who leads Asana Labs, an internal think tank that works with academic researchers.

“It forces you to completely rethink your meetings and rebuild your calendar from the ground up in a way that you just can’t do when you’re looking at meetings one by one,” says Hinds, who calls the process “ meeting doomsday ” and says the pilot has now expanded to a broader group of workers.

Jessica Reeder, a senior strategy and operations manager for workplace at GitLab, says it’s important to plan ahead for any kind of mass meeting deletion—even if temporary. The work still has to get done, and there has to be a plan for how decisions will get made asynchronously. “Work doesn’t just stop,” she says. “It’s not something where you just overnight say ‘great, we’re not going to have any meetings.’ You have to really put together the pieces that will allow you to continue to be productive and effective.”

Meanwhile, it has to be led from the top. All too often, recurring meetings stay on calendars because lower-ranking employees feel an obligation to attend and don’t feel they can skip, which is why it’s especially important for senior leaders to audit—and delete—unneeded meetings. “Once you stop and get intentional about the meetings, it really easy to see which ones you need,” says Reeder. “That helps with that politeness issue. It’s a formal process.”

HP’s Dismore—who says unclogging her own calendar and planning internal meeting-free Fridays is part of a broader effort to help prevent burnout—recognizes that. So many meetings among top decision-makers, she says, have a “herd mentality” and add so many extra people who “could be doing something else,” she says. “It’s being very intentional about the meetings that we have.”

Filed Under: Uncategorized HP, Brian Elliott, Rebecca Hinds, Asana, GitLab, Slack, Leadership Strategy, Rebecca..., meetings google calendar, top leaders dokkan battle, bankruptcy 431 meeting, best leader dokkan battle, overload multiplayer car battle mod apk, doomsday vs battle wiki, moba doomsday war 3v3 storm battle mod apk, moba doomsday war 3v3 storm battle mod, the battle against f&i vendor overload, g suite meeting room calendar

Ambani and Adani: Asia’s richest men battle to dominate 5G in India

August 2, 2022 by www.bbc.co.uk Leave a Comment

By Nikhil Inamdar

  • Published
    2 August

Share page

About sharing

India’s largest auction for 5G airwaves has ended after seven days, potentially setting the stage for a battle of supremacy over India’s digital future between two of Asia’s richest men – Gautam Adani and Mukesh Ambani.

A total of 72 gigahertz of spectrum was on the block in the auction. Ashwini Vaishnaw, India’s telecoms minister, said 71% of what was on offer was sold.

The government drew bids worth approximately $19bn from the three current players – Mr Ambani’s Reliance-Jio or (R-Jio), Vodafone Idea and Bharti Airtel – and from a fourth, new entrant, Adani Data Networks.

This surpassed expectations as total bids had more than doubled since the last auction in March 2021, according to CRISIL Research.

While R-Jio emerged as the largest bidder, buying spectrum worth $11bn, the Adani group spent only about $26m. The remaining bids came from Bharti Airtel and Vodafone Idea.

While Bharti Airtel and R-Jio reportedly bid for pan-India airwaves, cash-strapped Vodafone Idea spent only in priority sectors.

“Jio is fully ready for 5G rollout in the shortest period of time because of its nationwide fibre presence… and strong global partnerships across the technology ecosystem,” R-Jio said in a statement.

The Adani Group bid on private spectrum that would be accessible in specific areas such as ports or airports – a sector in which the company has already heavily invested.

Mr Ambani’s R-Jio is now a familiar name in India’s internet market, Mr Adani is a surprise bidder – he controls a sprawling business that spans ports, airports and power, and recently displaced Bill Gates to become the world’s fourth-richest person, with a net worth more than $112bn.

While the Adani Group has said it was not interested in competing in the wider market outside of private spectrum, analysts say this could just be the first step in that direction.

“We believe if the Adani Group does end up buying spectrum in the upcoming auction, it could potentially increase competition… in addition to opening the doors for the Adani Group to expand into consumer mobile services over time,” Goldman Sachs said in a note.

The move will make Vodafone Idea and Bharti Airtel jittery – the two telecom firms are still reeling from the tariff wars launched by R-Jio’s disruptive 2016 entry when it slashed prices. Now, they face the possibility of more competition from yet another deep-pocketed billionaire.

For Mr Ambani, it’s an unexpected face-off with a rival who’s so far steered clear of what is seen as his turf.

The introduction of 5G in India is likely to usher in a new era of high-speed internet, allowing video downloads in seconds and enabling the use of advanced connected devices through cloud computing technologies.

With higher speeds on offer, Indian telecom companies are expected to benefit from charging higher prices for 5G – they have so far refrained from charging more for 4G plans as compared to 2G or 3G plans.

5G tariff plans will likely lead to higher revenues for telecom companies, according to a note from Nomura.

But India will take to 5G slowly, especially given the likelihood of higher prices – and the fact that only about 7% of India’s overall smartphone base is 5G-enabled.

But record proceeds from the auction – the highest compared to the previous seven rounds since 2010 – will help shore up the government’s finances at a time when India’s fiscal deficit – the gap between revenues and expenditure – is expected to hit 6.4%.

Analysts estimate that India’s Department of Telecommunications will receive $1.6bn upfront over the next 20 years.

The government is expected to finish allocating airwaves by August and start rolling out 5G services in early October this year.

“Within a year or so, we should have a good rollout of 5G in the country,” Mr Vaishnaw said.

More on this story

  • Why your new phone could disrupt flights and ground planes

    • 19 January

  • What is 5G and what will it mean for you?

    • 28 January 2020

Related Topics

  • Asia
  • India
  • 5G
  • Internet

Filed Under: Uncategorized India, adani infra india ltd, adani wilmar india, asia most richest country, jockey mens underwear size chart india, 5g asia, asia top 10 richest person, 100 world richest men, ten world richest men, 10 world richest men, mukesh ambani world richest man

Met Office says balmy temperatures are to return as Brits battle heavy downpour

August 18, 2022 by www.dailystar.co.uk Leave a Comment

The recent thunderstorms and heavy rain have brought an end to the heatwave , which according to the Met Office will be making a return by the end of the month.

After some areas in the UK experienced temperatures of 36C, the forecast of temperatures and torrential rain hit hit regions at the beginning of this week, bringing an end to the intense heat that had plagued the UK since July.

According to weather maps from WX Charts, they show that temperatures set to be creeping above 30C for the last week of August, bringing about the third iteration of the heatwave.

READ MORE: Furious woman spots stranger stealing water from her hosepipe during heatwave

Droughts have been declared in several areas in the UK as last month saw the driest July on record since 1976, as some experts have warned that the UK would require several weeks of rainfall to get over the worst effects of the drought that has resulted in a nationwide water shortage.

Due to the ground being too dry to absorb masses amounts of rain, the Met Office warned that this could lead to flash flooding.

“While some places stay dry, others are likely to see thunderstorms with torrential rain bringing some disruption.

“Flooding of homes and businesses could happen quickly, with damage to some buildings from floodwater, lightning strikes, hail or strong winds.

“Fast flowing or deep floodwater is possible, causing a danger to life. Where flooding or lightning strikes occur, there is a chance of delays and some cancellations to train and bus services.

“Spray and sudden flooding could lead to difficult driving conditions and some road closures. Some communities might become cut off if roads flood. Power cuts might occur and other services to some homes and businesses could be lost.”

To stay up to date with all the latest news, make sure you sign up to one of our newsletters here .

Warnings have been sent across the country including Scotland and the south of England.

Met Office forecaster Aidan McGivern said: “The heatwave is now ending and it is ending for many in a bang but thunderstorms over the coming days will be hit and miss as is often the case.

“You can see by the speckled nature of these showers that they are going to be very variable across the country with some places seeing an awful lot of wet weather in a short amount of time and others missing out entirely and seeing some brighter interludes.”

READ NEXT:

  • Furious woman spots stranger stealing water from her hosepipe during heatwave

  • Brits flock to the beach as sunseekers bask in 35C heatwave before storms arrive

  • Brits could be forced to leave windows filthy for months due to drought

Filed Under: Uncategorized UK Weather, Met Office, Heatwave, Latest News, met office weather sheffield, the met office weather, met office wether, met office wetaher, met office westher, met office weathr, met office weathe, met office weater, met office weatehr, crowds in which they say the temperature is high

The Jan. 6 Hearing Put a True-Crime Drama on Prime-Time TV

June 10, 2022 by www.nytimes.com Leave a Comment

The first night of the congressional Jan. 6 hearings was not an entertainment. It was deadly serious reality, offering a panorama and a terrifying close-up of a real nightmare: The attempt, through violence, to effectively end American democracy by overturning the will of the voters and keeping President Donald J. Trump installed in an office that he lost.

But the hearings were also television, fighting for attention in a cacophonous media environment. This is not just me speaking as a TV critic. The committee itself acknowledged this by bringing on James Goldston, a former ABC News president and producer, to shape the broadcast, and by airing it, unusually, in prime time.

This was not simply a dutiful time capsule for the historical archives. This was TV meant to break through, and to matter, now .

What we saw in this first installment was impressive: a well-crafted, passionate and disciplined two-hour opening act. It made the committee’s case in miniature, that the attack on the Capitol was no spontaneous outburst but rather the “culmination of an attempted coup,” in the words of the committee chairman, Representative Bennie Thompson, Democrat of Mississippi. And it promised, tantalizingly, to flesh out the larger plot with fine detail and an expansive cast.

The proceedings had familiar hallmarks, including live testimony and opening remarks from Mr. Thompson and from the vice chairwoman, Representative Liz Cheney, Republican of Wyoming. But it was packaged like a prime-time news special, the live elements seamlessly interspersed with recorded interview excerpts, time stamps and graphics.

Key Revelations From the Jan. 6 Hearings


Card 1 of 9

Key Revelations From the Jan. 6 Hearings


Making a case against Trump. The House committee investigating the Jan. 6 attack is laying out a comprehensive narrative of President Donald J. Trump’s efforts to overturn the 2020 election. Here are the main themes that have emerged so far from eight public hearings:

Key Revelations From the Jan. 6 Hearings


An unsettling narrative. During the first hearing, the committee described in vivid detail what it characterized as an attempted coup orchestrated by the former president that culminated in the assault on the Capitol. At the heart of the gripping story were three main players: Mr. Trump, the Proud Boys and a Capitol Police officer .

Key Revelations From the Jan. 6 Hearings


Creating election lies. In its second hearing, the panel showed how Mr. Trump ignored aides and advisers as he declared victory prematurely and relentlessly pressed claims of fraud he was told were wrong . “He’s become detached from reality if he really believes this stuff,” William P. Barr, the former attorney general, said of Mr. Trump during a videotaped interview.

Key Revelations From the Jan. 6 Hearings


Pressuring Pence. Mr. Trump continued pressuring Vice President Mike Pence to go along with a plan to overturn his loss even after he was told it was illegal, according to testimony laid out by the panel during the third hearing. The committee showed how Mr. Trump’s actions led his supporters to storm the Capitol, sending Mr. Pence fleeing for his life .

Key Revelations From the Jan. 6 Hearings


Fake elector plan. The committee used its fourth hearing to detail how Mr. Trump was personally involved in a scheme to put forward fake electors . The panel also presented fresh details on how the former president leaned on state officials to invalidate his defeat, opening them up to violent threats when they refused .

Key Revelations From the Jan. 6 Hearings


Strong arming the Justice Dept. During the fifth hearing, the panel explored Mr. Trump’s wide-ranging and relentless scheme to misuse the Justice Department to keep himself in power. The panel also presented evidence that at least half a dozen Republican members of Congress sought pre-emptive pardons .

Key Revelations From the Jan. 6 Hearings


The surprise hearing. Cassidy Hutchinson , ​​a former White House aide, delivered explosive testimony during the panel’s sixth session, saying that the president knew the crowd on Jan. 6 was armed , but wanted to loosen security. She also painted Mark Meadows, the White House chief of staff, as disengaged and unwilling to act as rioters approached the Capitol.

Key Revelations From the Jan. 6 Hearings


Planning a march. Mr. Trump planned to lead a march to the Capitol on Jan. 6 but wanted it to look spontaneous , the committee revealed during its seventh hearing. Representative Liz Cheney also said that Mr. Trump had reached out to a witness in the panel’s investigation , and that the committee had informed the Justice Department of the approach.

Key Revelations From the Jan. 6 Hearings


A “complete dereliction” of duty. In the final public hearing of the summer, the panel accused the former president of dereliction of duty for failing to act to stop the Capitol assault . The committee documented how, over 187 minutes, Mr. Trump had ignored pleas to call off the mob and then refused to say the election was over even a day after the attack.

Even more striking, however, was the broadcast’s structure, which recalled 2022’s most ubiquitous TV format : The true-crime and true-scandal limited series.

Like “Under the Banner of Heaven,” “Candy” and similar ripped-from-the-headlines dramas, it introduced the culminating violent act in its first episode — the Jan. 6, 2021, attack on the Capitol — in a point-of-view montage that made the viewer the target of the mob’s blows and curses. Then it promised to move back in the timeline and delve into the larger conditions and machinations behind the crimes.

It had both episodic structure and a serial arc. Ms. Cheney laid out how each installment would focus on a piece of a “seven-point plan” by Mr. Trump. But the presentation also put these parts in an overall context, giving evidence that Mr. Trump was told by his closest advisers that he lost, schemed to throw out the election anyway and summoned supporters, including organized, violent groups, for a “wild” day in Washington.

Then the muscle materialized, under the banner of Trump.

At compact length by congressional standards, the hearing introduced a universe of characters, relationships and antagonists: the president’s advisers, including the former Attorney General William P. Barr, who used “nonsense” and stronger language to dismiss claims of election fraud; Mr. Trump’s fury at his vice president, Mike Pence, which according to the committee led the former president to say that the mob members threatening to hang Mr. Pence might “have the right idea”; and the Trump-supporting groups, including the Proud Boys , described as leading a coordinated strike, not a spontaneous outburst.


How Times reporters cover politics. We rely on our journalists to be independent observers. So while Times staff members may vote, they are not allowed to endorse or campaign for candidates or political causes. This includes participating in marches or rallies in support of a movement or giving money to, or raising money for, any political candidate or election cause.

Learn more about our process.

The curtain raiser was at times brutal to watch, particularly the testimony of Caroline Edwards, a Capitol Police officer injured on Jan. 6, who described “slipping in people’s blood” as she and her outnumbered comrades faced hours of hand-to-hand combat. Maybe most haunting was seeing the quiet-spoken Ms. Edwards watch video of her own assault.

The testimony moved to the other side of the battle line with the documentarian Nick Quested, who had been embedded with the Proud Boys before and during the attack. His contribution was not just more shocking footage but a thesis: that the group had organized and begun its move toward the Capitol before Mr. Trump even spoke at his Jan. 6 rally — a counternarrative to the idea that the siege was simply a protest that got out of hand.

I know that some readers are offended by the mere use of “narrative” or “story” to describe crucial information about an attack on democracy. But these are no insults; story structure is not just for Marvel movies. Narrative is what gives a deluge of information form and pattern. Storytelling is a tool for engagement, not just distraction.

The committee clearly knows this. As Jake Tapper noted on CNN before the hearing, it did not have to televise these sessions at all. It could have just issued a report. But as TV has proved, not everyone wants the 800-page paperback when they can opt for the compelling multipart adaptation. (At least 20 million people watched the hearing, according to ratings from Nielsen.)

And if you want to know the power of applying the lessons of entertainment TV to politics, look at Fox News, which did not air the hearings but spent the evening actively attacking them. Roger Ailes, a former talk-show producer, built Fox in part on showbiz production values, provocation and appeals to emotion. The current star of that channel , the authoritarian-friendly Tucker Carlson, was telling his sizable audience that the bloody assault on the center of government was “forgettably minor.”

The Jan. 6 hearings have to live in this context of infotainment and demagoguery, like it or not. And the first episode was savvy not only about the larger TV audience but also about a smaller one — the news media — and what it takes to maximize coverage.

Nothing draws the news like novelty; a brief scooplet, freshly exposed, will often outweigh a brazen plot freely confessed from a presidential podium or by tweet. So the committee repeatedly referenced “never-before-seen” video, a descriptor that was repeated over and over in the TV coverage.

The program offered preview clips of boldface-name testimony — including that of Ivanka Trump, undermining her father’s claims by saying that she accepted Mr. Barr’s assessment — which gave reporters numerous tidbits to write up and tweet about. Even the run time, at just under two hours, left time for recap and analysis before the broadcast networks’ 10 p.m. block.

There was, however, a key difference between this production and a TV crime drama. The hearings left no mystery about their theory of the case, and they engaged in no coyness about whodunit (in the committee’s judgment), how and why.

One last distinction, and maybe the most important: This, for once, was a true-crime serial made in the urgent hope that there not be a sequel.

Filed Under: Uncategorized House Select Committee to Investigate the January 6th;Jan 6th hearings, Liz Cheney, Bennie G Thompson, Storming of the US Capitol (Jan, 2021), US Politics, Donald..., best prime time dramas, longest running prime time tv show, true crime all the time, true crime channel tv guide, true crime show amazon prime, true crime best tv, best true crime tv shows

Copyright © 2022 Search. Power by Wordpress.
Home - About Us - Contact Us - Disclaimers - DMCA - Privacy Policy - Submit your story